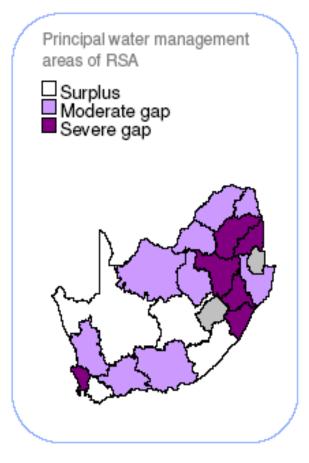
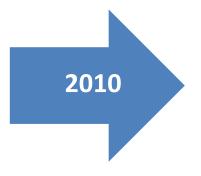
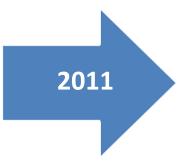

Addressing the water risk in SA requires partnership



2. Under current efficiency levels, in 2030 South Africa will face a supply-demand deficit of ~17% of demand


2030 Water Resources Group

2030 (estimate), billion cubic meters



SWPN Milestones

November

Exploratory workshop by WEF and DWA at CEO Water Mandate conference in Cape Town

January

Request by Minister Molewa to WEF Water Initiative to catalyse the SWPN partnership in Davos

May

Declaration of partnership between the South African Department of Water Affairs (DWA) and WRG at the WEF Africa in Cape Town

August

Initial local investment secured to establish the Secretariat

November

Public-private-civil expert leadership group – SWPN, formally launched at COP 17 in Durban

STRATEGIC WATER PARTNERS NETWORK SOUTH AFRICA Closing the water gap by 2030

2012

Jan – Apr

Thematic Working Groups formed and carry out sector analysis

May - Aug

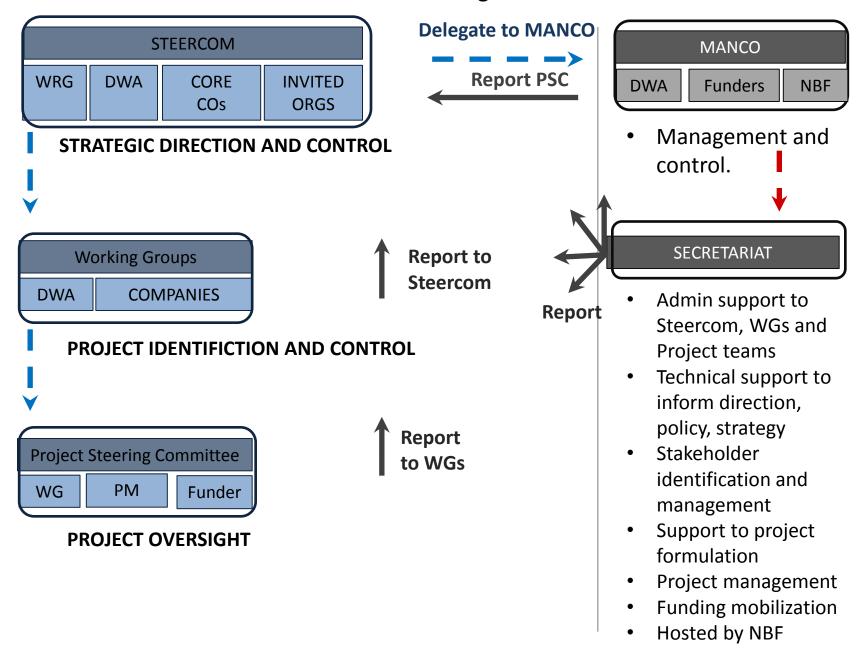
Thematic working groups consider intervention options

Sep – Nov

Thematic working groups fully functional and robust and prepare projects

SWPN partners

building on private-publiccivil society strengths



Governance and management Structure

Strategic focus areas to close the water gap

Effluent and Waste Water Treatment

- Mine water management
- Municipal waste water management and reuse

Water Use Efficiency and Leakage Reduction

Municipal and industrial water loss

Agricultural Supply Chain Water

- Unlock funding and improve equity in water access for irrigation schemes
- Water use efficiency in irrigation

Priority areas based on:

- Major impact on future water demand or supply
- Potential for scalable action
- Opportunity for public-private partnership

Project example : Sustainable mine water management

The challenge

- Mpumalanga is South Africa's largest coal producing province
- Mines generate jobs, income but also pollution
- Basin projected to run into a water deficit by 2017
- Pollution
- Current mine water management not sustainable institutionally and financially

Potential solution

• Improved water quality and 52.2 million m³ per year, closing the regional Olifants water gap by 26.2% in 2020

SWPN contribution

- Developing the institutional and financial models and policy reforms required to support financially sustainable mine water management
- Includes: (i) options analysis of collaborative interventions mine area catchment scale; and (ii) establishment of a public-private coordinating body

Projects addressing municipal water losses

The challenge

 Water loss in municipal systems is estimated at 32%. Non revenue water is 37% and is worth R7 billion.

SWPN response

1. No Drop programme

- Scorecard and strategy to incentivize municipal water loss reduction
- Target: reduce water losses from the current 32% to 18% by 2025, saving over 600 billion litres annually with a financial value of over R2.5 billion

2. Performance contract

 Developed a model contract compliant with the MFMA to assist municipalities better contract or partner with private sector to reduce water and revenue loss

Project example: Vaalharts irrigation scheme upgrading

The challenge

- SA's oldest and largest irrigation scheme covering over 35,000 ha
- Infrastructure built between 1938 and 1966; some at risk of imminent collapse
- Business as usual risks lowering agricultural output, local jobs and water supply to 400,000 residents of 7 municipalities

Potential solution

Infrastructure refurbishment will:

- Save 40 million m³/annum
- Contribute to equity targets through access to saved water
- Improve the schemes productivity
- Create an additional 2,000 jobs to the existing 7,500

SWPN role in solution

- An investment of R4 billion over 20 years is required to rehabilitate and upgrade the infrastructure
- The SWPN is convening stakeholders to develop a joint business case for the upgrading

Project example: Roll out of the Water Administration System (WAS)

The Opportunity

- To Reduce water losses from the selected irrigation schemes
- Contribute to closing the local water gap within the catchments where the schemes are located
- Projected direct savings = $17.8 \text{ million m}^3 = 0.7\% \text{ of the national}$ 2030 water gap

Potential solution

- Implementation of the Water Release module of the Water Administration System (WAS)
- To unlock private sector funding for roll out of WAS or its water release module

SWPN role in solution

- Facilitate installation and implementation of Water Release module at selected irrigation schemes
- Including all technical support required to get the module running at the schemes

Industrial challenges

Southern Cape region 2009 – 2010 Wolvedans Dam < 20%

Industrial challenges

Babelegi Factory (Hammanskraal) Recent investment: R250 million

Permanent Jobs: 350

Water and electricity reliability of supply. Water quality

Harrismith Factory

Recent investment:

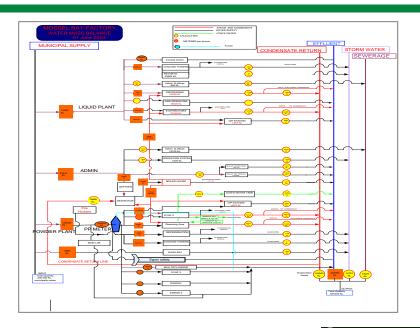
R80 million

Permanent Jobs: 310

Water and electricity reliability of supply.

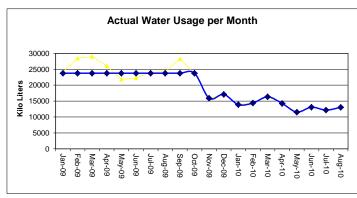
Estcourt Factory

Recent investment:


R500 million

Permanent Jobs: 550

Water and electricity reliability of supply.


Industrial challenges: Response

50% Reduction!!

Industrial challenges: Response

Sustainable Water Management in Agriculture: The 5 key Principles and Practices

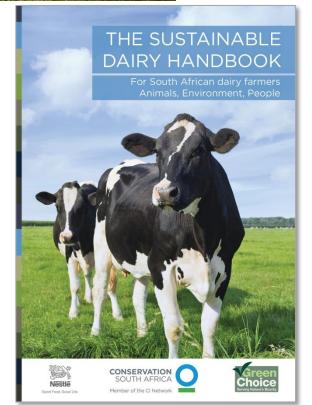
1. Sustainable Farming

- · Recognise agriculture as a significant contributor to water pollution
- · Manage to reduce the impact of pollution from fertilisers, pesticides, manure, slurry, soil runoff

2. Economic Sustainability

· Good water management will cut costs for farmers, reduce pollution and will often improve productivity

3. Social Sustainability


· Improved working and social conditions for farmers will allow a higher priority for good water management

4. Environmental Sustainability

· Good water stewardship benefits the natural environment and wildlife

5. Focus on specific crops

· Examples from specific crops can set an example of good practice for all

Industrial challenges: Response

- Multi-stakeholder partnerships
 - SWPN

Thank you

A partnership between the Department of Water and Sanitation, the private sector and civil society working collectively to close the national water gap

